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Abstract 
Two unsolved empirical questions are whether existing asset pricing models are able to explain the cross-section 
of insurance stock returns and whether there are other insurance specific return anomalies. We analyze the cross-
section of 127 U.S. property/liability insurance stocks in the time period 1988 to 2013 to answer these two 
questions. We find that the book-to-market ratio, prior month return, illiquidity, and cashflow-volatility are 
priced in the cross-section of property/liability insurance stocks. Existing asset pricing models (e.g., Fama and 
French, 1993; Petkova, 2006) are not able to explain the cross-section of insurance stock returns. We develop a 
five factor model build upon the insurance-specific anomalies which explains the cross-sectional variation. Our 
results complete those of Fama and French (1992, 1993) on non-financial firms and Viale et al. (2009) on banks 
and shed new light on the pricing determinants of insurance products. 
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1 Introduction 

The finance literature in general excludes insurance companies, banks and other financial 

institutions from cross-sectional asset pricing tests (see, e.g., Brennan, Chordia, and 

Subrahmanyam (1998), Fama and French (2008)).1 The main prediction of an asset pricing model, 

though, is that the expected return on any risky asset is linear in beta. Put in other words, the 

cross-sectional difference between the mean return of two assets is entirely predicted by their beta 

exposure. Since asset pricing models ought to capture cross-sectional discrepancies across all 

assets, it is an economically relevant question whether these models are able to price also 

insurance stocks.  

In this paper we analyze the cross-section of 127 U.S. property/liability (p/l) insurance stocks in 

the time period 1988 to 2013. The motivation to do this is threefold. First, state-of-the-art asset 

pricing models such as the Fama and French (1993) three-factor model or Petkova (2006) five-

factor model perform extremely well in a portfolio setting for the entire universe of stocks 

(excluding financial firms), but how far this holds for the insurance sector is unclear. Second, and 

in close connection with pricing models in general, it is unclear whether known anomalies from 

the finance literature also exist in insurance stocks and whether specific characteristics of 

insurance stocks result in a return pattern (i.e. a potential anomaly).2 Third, our discussion 

provides new insights into the ongoing discussion on the pricing determinants of insurance 

products and on the correct determination of costs of capital in the insurance sector.3 

                                                 
1  The reason for excluding financial firms is their high leverage and their “accounting treatment of revenues and 

profits [which] is significantly different than that in other sectors.”(Opler and Titman (1994)). In addition, Fama 
and French (2000) emphasize the regulated nature of financial firms. 

2  The p/l insurance sector is exposed to unique risks from catastrophes resulting in barrier option-like return 
characteristic and returns which are uncorrelated with returns from the rest of the market. Two unsolved empirical 
questions are thus whether existing asset pricing models are able to explain the cross-section of expected insurance 
stock returns and whether there are other insurance specific return anomalies. 

3  A correct asset pricing model and thus accurate cost of equity is crucial for fairly priced insurance products. 
Capital costs are of great importance in the insurance industry in some capital-intensive lines of insurance 
business, where capital costs can constitute the bulk of the premium (Zanjani (2002)). Standard asset pricing 
ignores the fact that policyholders unlike any other industry depend on the solvability of the insurer if claims have 
to be paid (Doherty and Tinic (1981); Zanjani (2002)). Thus it is very likely that the cost of capital and thus the 
return for shareholders deviates from what standard asset pricing models would predict. 
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Although the analysis of the cross-sectional risk exposure is the heart of modern asset pricing (see, 

e.g., Garlappi and Yan (2011), Brennan et al. (2012), or Eisfeldt and Papanikolaou (2013)), there 

is almost no literature on this in the insurance context.4 Next from the general arguments for the 

exclusion of financial firms from asset pricing tests, another main reason for the almost non-

existence of such literature for insurance is the scarce amount of insurance stocks. 

Our paper closes this gap in the literature by analyzing the cross-section of expected insurance 

stock returns. We consider five asset pricing models5, four of them are well known in the finance 

literature, the fifth one is constructed from our empirical findings and based on relevant 

hypotheses for each empirical finding. We test these models by running time-series regressions 

and Fama-MacBeth (1973) regressions on portfolios and individual stock returns. Moreover, we 

analyze well-known and potentially insurance-specific stock return anomalies which should be 

explained by asset-pricing models. For that purpose, we sort insurance stocks according to 21 

characteristics.6 Finally, we contribute to the discussion on interest rate exposure, leverage, size 

and other firm characteristics discussed in the insurance literature, which so far focused on the 

time-series relation (see e.g., Brewer et al. (2007) or Carson, Elyasiani, and Mansur (2008)).7 

The central findings of this paper are that the book-to-market (B/M) ratio, prior month return, 

illiquidity, and cashflow-volatility are priced in the cross-section of p/l insurance stocks. The size 

anomaly is only present in smallest decile of insurance stocks. The Fama/French model can 

neither explain the size nor the B/M anomaly in the insurance stocks. A five factor model build 

                                                 
4  The only two exceptions are Harrington (1983) and Cummins and Harrington (1988). Barber und Lyon (1997) sort 

portfolios for financial firms and thus implicitly also analyze cross-section of insurance stocks although no formal 
tests are conducted in their paper. 

5  The four models are the CAPM, Fama and French’s (1993) three-factor model (FF-3), FF-3 with momentum 
(Carhart, 1997), and an ICAPM with innovations in state variables (Petkova (2006)). 

6  The 21 characteristics are CAPM beta, downside beta, upside beta, size, B/M ratio, illiquidity, momentum, long-
term reversal, idiosyncratic volatility, cashflow volatility, co-skewness, co-kurtosis, asset growth, investment 
performance, term spread, default spread, broker-dealer leverage, insurance leverage, financial leverage, and total 
leverage. 

7  This study can also be considered as an out-of-sample test on the accuracy of asset pricing models in general. One 
central critique in asset pricing is the data snooping bias (Lo and MacKinlay (1990)) through portfolio formation, 
which is why Lewellen, Nagel, and Shanken (2010) emphasize the use of different test assets. All assets should be 
priced by one stochastic discount factor and insurance stocks might be one of the most challenging test assets, 
since their risk exposure is theoretically very different from other stocks. 
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upon the insurance-specific anomalies explains the cross-sectional variation. Our results complete 

those of Fama and French (1992, 1993) on non-financial firms and Viale et al. (2009) on banks. 

The remainder of this paper is organized as follows. Section 2 gives a brief literature review. 

Section 3 describes our hypotheses. Section 4 provides a description of the data and the 

methodology. Section 5 shows the empirical results. Section 6 checks for robustness, and Section 

7 concludes. 

2 Literature review 

There are only two relatively old papers that analyze the cross-section of insurance stocks. 

Harrington (1983) investigates life insurers, finding some evidence of a significant relationship 

between mean returns and systematic risk (i.e. the CAPM-beta), but also a significant relationship 

between mean returns and measures of nonsystematic risk. The second one by Cummins and 

Harrington (1988) addressing p/l insurers finds that the CAPM is correctly specified during the 

period 1980 – 1983, but inconsistent in earlier periods. Since then, no researcher has directly 

analyzed the cross-section of insurance return.8 

More recent related research on insurance analyzes cost of equity estimation (Cummins and 

Phillips (2005); Wen et al. (2008)) and the time series characteristics of insurance stocks (Brewer 

et al. (2007); Carson, Elyasiani, and Mansur (2008)).9 Cummins and Phillips (2005) investigate 

the cost of equity for p/l insurers using the CAPM and the FF-3 model. They find that the costs of 

capital estimates of FF-3 model are significantly higher than those of the CAPM. The authors 

                                                 
8  Barber and Lyon (1997) analyze the cross-section of financial firms for the time period July 1973 to December 

1994 and find that size and B/M patterns also exist in financial firms. Although their study covers both bank and 
insurance they do not explicitly discuss insurance stocks, only sort portfolios and do not provide further asset 
pricing tests to analyze the cross-sectional relationship. More recently, Viale, Kolari, and Fraser (2009) analyze the 
cross-section of bank stocks. Using size and B/M sorted portfolios as test assets they find that the market excess 
return and shocks to the slope of the yield curve explain the cross-section of expected bank stock returns. In 
contrast to the portfolio sorting results of Barber and Lyon, they find no evidence of SMB or HML being priced in 
bank stock returns. 

9  Note that significant coefficients in a time-series regressions can only be a first indicator about risk. For example, 
the market factor is highly correlated with stock returns and yet is not capturing risk in the sense that a higher 
exposure leads to higher returns. Rather, the market factor can be seen as a level factor capturing the grand mean. 
Including the market factor makes thus sense even if it is not capturing the cross-section of stocks returns (Ferson, 
Sarkissian, and Simin (1999)). 
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explicitly note that they do not intend to “study asset pricing anomalies or to develop and test a 

multi-factor asset pricing model” but rather to estimate “divisional costs of capital by line for 

property-liability insurers” (Cummins and Phillips (2005), p. 449). 

Wen et al. (2008) evaluate a model by Rubinstein (1976) and applied by Leland (1999), which 

captures the skewness and kurtosis in the market beta. They run panel regressions of the absolute 

difference between basic CAPM betas and RL-model betas (as dependent variable) against firm-

level characteristics. They find that the absolute difference is significantly influenced by firm size, 

degree of leverage, and skewness. Although this paper only covers property/liability insurers and 

does not employ traditional asset pricing tests it is a good starting point for asset pricing in the 

insurance industry as they report abnormal returns using single-sorted portfolios based on size, 

skewness, degree of normality, and subperiods.10 

More insurance literature exists on the time-series correlation between factors and insurance stock 

returns. Brewer et al. (2007) address the interest rate sensitivity of life insurers and find that their 

returns are negatively correlated with changes in interest rates. Carson, Elyasiani, and Mansur 

(2008) investigate the market risk, interest rate risk, and interdependencies across insurance 

industries within a GARCH time-series framework and find greater market exposure in life and 

health insurers compared to property/liability insurers. They also find that interest rate sensitivity 

is negative and greatest for life insurers while interdependencies in returns are strongest between 

property/liability and health insurers.11 Table 1 summarizes the existing insurance literature and 

outlines the contribution of this paper.12/13 

                                                 
10  Cummins and Lamm-Tennant (1994) derive a factor model that accounts for both financial and insurance 

leverage. They stress the contradicting results on insurance leverage referring to Fairley (1979) and Cummins and 
Harrington (1985) and show that the two leverage factors have a positive and significant impact on the insurers’ 
equity CAPM betas.  

11  Interestingly, none of them or any other study analyzed liquidity risk or momentum patterns, two topics which 
have received wide attention in the finance literature over the last years. 

12  It should be noted that there are numerous papers which apply asset pricing-pricing models in an insurance 
context. Especially, asset pricing models that account not only for shareholder but also policyholder interests go 
beyond the scope of this paper. See, e.g., Doherty (1991), Froot and Stein (1998), Froot and O’Connell (1997), 
Zanjani (2002), and Froot (2007), where risk management issues are integrated in standard asset pricing. Eckles, 
Halek, and Zhang (2013) apply the CAPM to analyze the impact of accruals quality. 
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Regarding the financial sector, i.e. commercial banks, Gandhi and Lustig (2014) show that the size 

anomaly in U.S. bank stocks differs from the overall equity market since large banks are “too big 

to fail” and thus such banks earn significantly lower returns than smaller banks. 

Table 1: Literature overview and contribution of this paper 
 

Paper 
 

Criteria 

Harrington 
(1983) 

Cummins 
and 

Harrington 
(1988) 

Cummins 
and Lamm- 

Tennant 
(1994) 

Barber and 
Lyon (1997) 

Cummins 
and Phillips 

(2005) 

Brewer et al. 
(2007) 

Carson, 
Elyasiani, 

and Mansur 
(2008) 

Wen et al. 
(2008) This Paper 

Industry Life p/l p/l 

Financial 
firms 

(banking 
and 

insurance) 

p/l Life p/l, A&H, 
Life p/l p/l 

Portfolios or 
Stocks 

Stocks and 
Portfolios Stocks Stocks Portfolios Portfolios Portfolios Portfolios Stocks and 

Portfolios 
Stocks and 
portfolios 

Time period 1961-1976  
(16 years) 

1970 – 1983 
(14 years) 

1980 – 1989 
(9 years) 

1973 – 1994 
(22 years) 

1997 – 2000 
(4 years) 

1975 – 2000 
(26 years) 

1991 – 2001 
(11 years) 

1970 – 2001 
(31 years) 

1988 – 2013 
(25.5 years) 

Theoretical 
or empirical Empirical Empirical 

Theoretical 
and 

Empirical 

Empirical / 
descriptive 

(sorting 
portfolios) 

Empirical Empirical Empirical Empirical Empirical 

Actual 
estimation of 
cost of capital 

No No No No Yes No No No No 

Framework / 
Model CAPM 

CAPM with 
skewness 

and 
idiosyncratic 

risk 

ICAPM 
No model 
(portfolio 

sorting only) 

CAPM and 
Fama-

French 3-
Factor 
model 
(1993) 

Extended 
CAPM with 
GARCH-M 

Extended 
CAPM with 

System-
GARCH 

CAPM and 
Rubinstein-

Leland 
(1976, 1999) 

CAPM, 
ICAPM, APT 

(5 models) 

Asset pricing 
test (i.e. 
testing 
pricing 
errors) 

Partially (i.e. 
testing 

significance 
of risk 

premium) 

Partially (i.e. 
testing 

significance 
of risk 

premium) 

No No No No No No 

Yes (i.e. cross-
sectional 
pricing of 

traded factors, 
HJ distance, 
time-series 
regressions 

including tests 
on intercepts) 

Approach 

Run cross-
sectional 

regressions 
with average 

insurance 
stocks 
returns 

Run cross-
sectional 

regressions 
with average 

insurance 
stocks 
returns 

Run factors 
against 

CAPM beta 
in pooled 
regression 

Sorting 
stocks by 

characteristi
cs into 

equally-
weighted 
portfolios 

Compare 
CoC 

estimates. 

Time-Series 
regression 

Time-series 
regression 

Compare 
risk 

estimates 
(i.e. betas) 
of CAPM 
and RL.  

Sort stocks by 
characteristics;

run Fama-
MacBeth 

(1973) 
regressions, 
Time-series 
Regressions; 
HJ-Distance 
comparison 

Key findings 

Idiosyncratic 
risk is 

correlated 
with returns 

Idiosyncratic 
risk is 

correlated 
with returns 

Insurance 
leverage and 

financial 
leverage 

affect 
market beta. 

Size and 
B/M 

anomalies 
are also 

present in 
financial 

firms. 

CoC for 
insurers 

using Fama-
French 
model 

significantly 
higher than 

CAPM 
estimates. 

Stock 
returns of 

life insurers 
are 

negatively 
related to 

changes in 
interest 
rates. 

Market risk 
is greatest 
for A&H 
insurers. 

Interest rate 
sensitivity 
greatest for 
life insurers. 

Small 
insurers 

(with 
asymmetric 

returns) 
should use 
RL model 
rather than 
CAPM to 
estimate 

CoC. 

Book-to-
market ratio; 
prior-month 

return; 
illiquidity; 
cashflow 

volatility. Size 
anomaly only 
in the smallest 

decile. 

  

                                                                                                                                                                
13  From a more holistic point of view, our study is also similar in nature to Ang, Shtauber and Tetlock (2013) who 

investigate the pricing of OTC traded stocks as a special case of test assets. In contrast to the listed market they 
find that the OTC liquidity premium is significantly larger whereas the momentum premium is significantly lower. 
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3 Hypotheses 

Our main benchmark model in the empirical part is the Fama-French model which has shown 

superior performance in the U.S. equity market (see Cooper, Gulen, and Schill (2008) amongst 

others) and which also represents the state of the art in the insurance literature (see Cummins and 

Phillips (2005); Wen et al. (2008)). The central hypothesis (H0) throughout the paper is thus that 

the Fama-French model is the correctly specified model to explain the cross-section of insurance 

stock returns. 

Furthermore, we hypothesize that known anomalies in the (non-financial, U.S.) equity market are 

either not present in insurance stocks or different in magnitude and / or direction compared to 

other industries. We attribute this hypothesis to three aspects. First, financial institutions are in 

general excluded from asset pricing tests (Barber and Lyon (1997)), Ghandi and Lustig (2014)) 

due to their high leverage, thus giving leverage ratios a different meaning than for non-financial 

firms (Fama and French (1993)) and due the regulatory aspect of financial institutions binding 

them to keep certain solvency ratios or follow other regulatory constraints. Second, p/l insurers are 

threatened by large losses through catastrophes which give p/l insurers a barrier option-like 

characteristic introducing high downside risk.14 The third reason is somewhat related to the 

previous one as losses from natural disasters (which do not need to be large in magnitude in 

contrast to the previous barrier option-like characteristic) result in uncorrelated returns from the 

rest of the market (Ibragimov, Jaffee, and Walden (2009)).15  

Due to these three aspects, we argue that insurers are unlike the general equity market where either 

risk factors are priced differently in magnitude, not at all or even other risk factors that do not 

appear in the general equity market. Specifically, we consider 21 potential stock anomalies which 

can be summarized in the following eleven broad categories: 

                                                 
14  A barrier option pays a certain amount at expiration as long as a specific barrier is not hit. In case of an insurer this 

barrier can be interpreted as the solvency capital level. If a catastrophe is large enough to strike the barrier an 
insurer becomes immediately insolvent and would be unable to recover. 

15  The fact that natural disasters are (to some extent) uncorrelated with the rest of the market also led to a new 
financial instrument in the early nineties, so-called insurance-linked securities (ILS). 
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(1) Market risk: We expect that the market beta itself is not priced as risk factor identical to 

the findings on broad based studies (Fama and French (1992)) and previous findings by 

Cummins and Harrington (1988) on p/c insurers for earlier periods. 

(2) B/M ratio: Insurers with high B/M ratios should earn higher returns. However, with p/c 

insurers being exposed to non-market related natural disasters and under the premise of the 

B/M ratio approximating some type of distress risk (Chen and Zhang (1998)) we expect a 

different meaning of the B/M ratio of insurers. 

(3) Size (market capitalization): Larger insurers earn lower returns compared to smaller 

insurers as they might have a more diversified insurance portfolio and thus a lower risk 

exposure on their liability side. 

(4) Past returns (momentum, prior month return, reversal): As for the finance literature in 

general, we expect similar results from past returns including a momentum effect based on 

the returns over the past twelve months (excluding the previous month before ranking the 

stocks). That is, past “winning” insurers outperform past “losing” insurers (Jegadeesh and 

Titman (1993)). We also expect that previous month returns, despite the transaction 

intensity, predict the cross-sectional behavior of insurance stocks as a result of 

overreaction to information. Last, we expect a return reversal when insurers are sorted by 

their returns over the past 36 months (excluding the previous 12 before ranking the stocks). 

(5) Liquidity (market-wide liquidity): The 2008 financial crisis has illustrated the importance 

of liquidity constraints for financial institutions (Brunnermeier and Pedersen (2009)). We 

thus expect that liquidity as defined by Pastor and Stambaugh (2003) has a cross-sectional 

impact on insurers’ stock returns. Specifically, we hypothesize that a stronger exposure 

towards market illiquidity of insurance stocks requires a higher risk premium and thus 

higher returns. 

(6) Leverage (total, insurance, financial, Broker / Dealer): We also look at four different 

measures addressing leverage exposure. Total leverage, insurance leverage and financial 
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leverage relate to a lower solvency level and thus a higher risk of default (Bhandari (1988); 

Cummins and Lamm-Tennant (1994)). The broker / dealer leverage relates to the fact that 

insurers might be exposed to the leverage adjustments of sophisticated market participants 

(i.e., broker / dealers) whose leverage “is a good empirical proxy for the marginal value of 

wealth” (Adrian, Etula, and Muir (2014)). 

(7) Interest rates (term structure and default risk): Large investments in bonds and treasuries 

made by insurers suggest that changes in interest rates, i.e. in the term structure and the 

ratings of interest-bearing securities have an impact on the cross-section of insurance 

stocks depending on the asset allocation of the insurer. An asset allocation towards long-

term bonds and corporate bonds (instead of government bonds) should result in higher 

income and thus higher returns. 

(8) Volatility (cashflow volatility, idiosyncratic risk): Both cashflow volatility (Huang (2009)) 

and idiosyncratic risk (with respect to the FF-3 model, Ang et al. (2006)) result in lower 

returns the larger the respective exposure. The two volatility measures relate to the fact that 

information uncertainty creates negative future returns. With insurance stocks being 

exposed to uncertainty about claims payments to policyholders from insurance contracts, 

the relationship between information uncertainty and cross-sectional patterns might be of 

great interest. 

(9) Distribution (coskewness, cokurtosis, downside risk, upside risk): The distribution of past 

returns for the cross-sectional behavior of stocks is analyzed by Harvey and Siddique 

(2000) for co-skeweness, Fang and Lai (1997) and Dittmar (2002) for co-kurtosis, Ang, 

Chen, and Xing for downside (upside) movements with the market. All of these 

distribution-linked variables could also be related to the heavy-tails of insurance claims 

and thus have predictive power on returns. 
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(10) Investments: We directly relate the investment cashflow to the insurer cross-sectional 

return behavior. Similar to the interest rate exposure, we argue that historically higher 

investment income by an insurer should lead to higher investment income in the future. 

(11) Asset growth: Asset contractions are followed by abnormally high returns, that is, stocks 

with previously high asset growth show on average lower returns compared to low asset 

growth firms (Cooper, Gulen, and Schill (2008)). One explanation is that investors 

overextrapolate past gains to growth. We also expect a similar negative relation between 

asset growth and expected returns for insurers. 

4 Data and Methodology 

Two approaches are commonly used in the asset pricing literature to analyze the cross-section of 

returns. The first is to examine portfolios of returns sorted by different characteristics in order to 

identify monotonic return patterns that cannot be explained by standard asset pricing models. The 

second approach is to run Fama-MacBeth (1973) regressions of portfolios or individual stocks 

within different model frameworks. After sorting insurance stocks in portfolios to identify return 

patterns, we also run Fama-MacBeth (1973) regressions both on individual stocks and single-

sorted portfolios. 

4.1 Asset pricing models 

Asset pricing models impose a linear relationship between expected returns and beta exposures, 

which is why asset pricing models are in general known as beta-pricing models.16 To test this 

relationship we run Fama-MacBeth (1973) two-pass regression methodology. The general setting 

of the first-pass time-series regression for each stock i = 1,..,N, with K factors is defined as: 

 𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝛼𝑖 +  ∑ 𝛽𝑖,𝑘𝑓𝑘,𝑡
𝐾
𝑘=1 + 𝜀𝑖,𝑡, (1)  

                                                 
16  Depending on the number of factors (K), this is also known as a K-factor beta-pricing model (see Kan, Robotti, 

and Shanken (2013)). 
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where 𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 is the excess return of stock i over the risk-free rate, 𝛽𝑖,𝑘 is the sensitivity of the 

stock i to factor k, and 𝑓𝑘,𝑡 is the realization of factor k at time t. The idiosyncratic return of stock i 

at time t is denoted by  𝜀𝑖,𝑡. 

The second-pass cross-sectional regressions of the Fama-Macbeth (1973) method uses the beta 

estimates from time-series regressions as independent variables and estimates at each time period t 

the following regression: 

 𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝑧𝑡 + ∑ 𝜆𝑘,𝑡𝛽̂𝑘,𝑖,𝑡
𝐾
𝑘=1 + 𝛼𝑖.𝑡, (2)  

where z is the zero-beta rate with expected mean of zero, 𝜆𝑘 is the risk premium of factor k, 𝛽̂𝑘,𝑖 is 

the beta estimate from a time-series regression, and 𝛼𝑖 are the residuals (i.e. pricing errors) of each 

stock i in the cross-section. 

We test four models from the finance literature and later derive an empirically driven model for 

insurance stocks which is the fifth model to be tested. 

The first model we test is the CAPM which is the only tested model in the insurance literature so 

far (Harrington (1983); Cummins and Harrington (1988)). The cross-sectional specification for the 

CAPM is: 

 E(𝑅𝑒) = 𝑧 + 𝜆𝑀𝐾𝑇𝛽𝑖,𝑀𝐾𝑇, (3)  

where E(𝑅𝑒) is the expected excess return of insurance stock i and MKT refers to the excess 

return of the stock market index. 

The second model is the empirically motivated FF-3 model and extends the CAPM by a size 

(SMB) and a value (HML) factor with the cross-sectional model being,  

 E(𝑅𝑒) = 𝑧 + 𝜆𝑀𝐾𝑇𝛽𝑖,𝑀𝐾𝑇 + 𝜆𝑆𝑀𝐵𝛽𝑖,𝑆𝑀𝐵 + 𝜆𝐻𝑀𝐿𝛽𝑖,𝐻𝑀𝐿, (4)  
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where SMB is a zero-investment portfolio between stocks of small and large market 

capitalizations, and HML is a zero-investment portfolio between stocks with high and low B/M 

ratios. 

The third model extends the FF-3 model with a momentum factor following Carhart (1997):  

 E(𝑅𝑒) = 𝑧 + 𝜆𝑀𝐾𝑇𝛽𝑖,𝑀𝐾𝑇 + 𝜆𝑆𝑀𝐵𝛽𝑖,𝑆𝑀𝐵 + 𝜆𝐻𝑀𝐿𝛽𝑖,𝐻𝑀𝐿 + 𝜆𝑀𝑂𝑀𝛽𝑖,𝑀𝑂𝑀, (5)  

where MOM is a zero investment portfolios that is calculated as the spread between returns of 

stocks with positive returns and those with negative returns over the months t–12 to t–2. 

The fourth model is the five-factor model by Petkova (2006) which is set in an ICAPM 

framework. Petkova (2006) uses innovations in the term spread, the default spread, the dividend 

yield and the 1-Month T-Bill rate. The cross-sectional relation is: 

E(𝑅𝑒) = 𝑧 + 𝜆𝑀𝐾𝑇𝛽𝑖,𝑀𝐾𝑇 + 𝜆𝑢�𝑑𝑖𝑣𝛽𝑖,𝑢�𝑑𝑖𝑣 + 𝜆𝑢�𝑇𝐸𝑅𝑀𝛽𝑖,𝑢�𝑇𝐸𝑅𝑀 + 𝜆𝑢�𝐷𝐸𝐹𝛽𝑖,𝑢�𝐷𝐸𝐹 + 𝜆𝑢�𝑅𝐹𝛽𝑖,𝑢�𝑅𝐹 , (6)  

where 𝑢�𝑑𝑖𝑣 refers to innovations in the dividend yield of the stock market, 𝑢�𝑇𝐸𝑅𝑀 are innovations 

in TERM, where TERM is identical to the previous definition, 𝑢�𝐷𝐸𝐹 are innovations in DEF and 

𝑢�𝑅𝐹 are innovations in the 1-month T-Bill (RF). Identical to Petkova (2006) and Kan, Robotti, and 

Shanken (2013) we extract innovations from a first-order vector autoregressive (VAR(1)) system 

comprising seven state variables which are MKT, SMB, HML, TERM, DEF, DIV, and RF. As 

Petkova (2006) we first demean the state variables in the VAR(1) system for convenience reasons 

and then orthogonalize the innovations of the state variables to the excess market factor for 

interpretational reasons. 

4.2 Data 

Our data sample consists of all traded U.S. property/liability insurers with SIC code 6311.17 We 

only include U.S. common stocks (excluding ADR and units of beneficiary interest) and exclude 

                                                 
17  We use the SIC code classification based on COMPUSTAT as this classification is more accurate to the actual 

industry classification (Kahle and Walkling (1996)). 
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stocks with negative book values. We further delete stocks with unreported book equity in year t-

1. To be included in our dataset, stocks must also have at least 36 months of consecutive return 

data. Our data spans a period of more than 25 years (July 1988 to December 2013).18 Table A1 in 

the Appendix reports the number of stocks per year in our sample. 

Stock return data and accounting information is retrieved from CRSP and COMPUSTAT, 

respectively. The FF-3 factors, the 1-month T-Bill yield, and the momentum factor are 

downloaded from Kenneth French’s website.19 The dividend yield on the S&P 500 is downloaded 

from Robert Shiller’s website.20 Data on the broker/dealer leverage factor comes from Tyler 

Muir’s website.21 The liquidity factor from innovations is retrieved from Robert Stambaugh’s 

website.22 The term spread, its changes, and innovations are constructed from the spread between 

10-year Treasury and 1-year Treasury constant maturity rates. The default spread, its changes, and 

innovations are constructed from Moody's seasoned Baa corporate bond yield and the 10-year 

Treasury rate. All interest yields are retrieved from the FRED® database of the Federal Reserve 

Bank of St. Louis. 

Panel A of Table 2 summarizes the monthly individual stocks returns of the property/liability 

insurance industry and the independent variables relevant for cross-sectional regressions.23 These 

independent variables are firm-specific and differ among all insurers. Beta values in Panel A are 

computed from rolling time-series regressions on each firm. The independent variables are also 

the 21 characteristics on which we sort insurance stocks and which were introduced in Section 3. 

Panel B of Table 2 reports the factor variables employed by the different asset pricing models 

presented in Section 4.1. These variables are used both in cross-sectional and time-series 

                                                 
18  Asset pricing studies should span at least 20 years (see Cochrane (2005), p. 287) to draw any conclusions. Also, 

insurance stocks before 1987 drastically reduces both in absolute numbers (i.e., while there are 61 p/l insurers in 
1987 there are only 41 in 1986 and the number continues to decrease further back in time) and, more importantly, 
in the availability of accounting data. 

19  http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
20  http://aida.wss.yale.edu/~shiller/data.htm. 
21  http://faculty.som.yale.edu/tylermuir/data.html. 
22  http://finance.wharton.upenn.edu/~stambaugh/liq_data_1962_2012.txt. 
23  The maximum return for Non-Life dates back to American International Corp (Ticker: AIG) in August 2009; the 

minimum return also belongs to AIG and dates back to September 2008. 
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regressions and are common to all insurers. The market excess return is the excess return of 

CRSP’s equally weighted market return index. The fact that p/l insurance sector differs from the 

overall market is indicated through a correlation of merely 0.65 between the market and an 

equally-weighted return index of p/l insurers. 

 
Table 2: Summary Statistics 

This table reports summary statistics for the dependent and independent variables. Panel A shows the realized raw 
return of p/l insurers. Panel B reports the independent variables which are winsorized at the 1th and 99th percentile and 
used in cross-sectional regression tests. 
 
Panel A: Characteristic values of insurers 
 Mean Std. Dev Min Max 
Dependent variables     

Raw Return 0.011 0.104 -0.835 2.45 
Independent variables     

βCAPM 0.588 0.444 -0.407 1.820 
βDownside 0.633 0.533 -0.996 2.229 

βUpside 0.547 0.651 -1.383 2.224 
Ln(Market Cap) 12.953         2.074 8.343 17.386 
Book-to-market 0.934 0.503 0.246 3.772 

Momentum 0.066 0.297 -0.909 0.817 
Previous month return 0.007 0.088     -0.282 0.276 

βLIQ 0.048 0.415 -1.292 1.433 
REV 0.149 0.447 -1.273 1.246 

ID- VOLA 0.020 0.016 0.003 0.093 
CF-VOLA 0.082 0.159 0.004 1.230 

βCO-SKEW -2.367 16.162 -67.120 51.368 
βCO-KURT -24.283 1351.874 -6197.054 5079.027 

Asset Growth 0.109 0.187 -0.308 1.161 
βΔTERM 0.017 0.047 -0.087 0.170 

βΔDEF -0.023 0.051 -0.195 0.095 
INVEST -0.187 0.271 -1.091 0.628 
βB/D LEV 0.001 0.006 -0.018 0.024 

INS LEV 231.266 584.050 0 3636.551 
FIN LEV 17.552 46.174 0 300.144 

Total LEV 266.194 650.513 0.243 3899.635 
βSMB 0.435 0.588 -0.964 2.296 
βHML 0.401 0.623 -1.524 2.329 

 
Panel B: Factor variables 

 𝑹𝑴𝑲𝑻𝑹𝑭 𝑺𝑴𝑩 𝑯𝑴𝑳 𝒖�𝑻𝑬𝑹𝑴 𝒖�𝑫𝑬𝑭 𝒖�𝒅𝒊𝒗 𝒖�𝑹𝑭 

Mean 0.008 0.002 0.002  0.000 0.000 0.000 0.000 
Std. dev. 0.053 0.032 0.031 0.003 0.003 0.001 0.000 

Min -0.206 -0.164 -0.127 -0.008 -0.010 -0.002 -0.001 
Max 0.220 0.220 0.139 0.010 0.021 0.003 0.001 
Obs. 306 306 306 306 306 306 306 
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5 Empirical evidence 

We first present results of single-sorted portfolios in section 5.1 followed by time series and cross-

sectional regression analyses of insurance stocks in section 5.2 to 5.6. 

5.1 Stock return anomalies 

Following the finance literature that analyzes the cross-section of stock returns (e.g., Vassalou and 

Xing (2004); Cooper, Gulen, and Schill (2008)) we sort portfolios by characteristics of insurance 

stocks to evaluate their return pattern. This allows us also to compare their pattern with the non-

financial sector and to evaluate insurance-specific characteristics. Sorting portfolios and analyzing 

the mean returns of these portfolios give an idea about inherent return premiums which is why the 

spread between portfolios sorted by high and low exposures towards a characteristic are often 

considered as risk factors. Another advantage of the portfolio formation is that they do not require 

linearity assumptions in contrast to regression analyses. However, the disadvantage of portfolio 

sorting “are that confounding effects can obfuscate return premiums based on univariate sorts” 

(Ang, Shtauber, Tetlock (2013)) leading to ambiguous inferences. 

We sort insurance stocks based on 21 characteristics. These characteristics are the market, 

downside, and upside beta exposure, size (market capitalization), B/M ratio, momentum, pervious-

month returns, liquidity, long-term reversal, idiosyncratic volatility, cashflow volatility, co-

skewness, co-kurtosis, asset growth, changes in the term and default spread, investment 

performance, broker-dealer leverage, insurance leverage, financial leverage, and total leverage.24 

All portfolio returns are sorted by their past characteristics to avoid a look-ahead bias. All 

information is known at the date of portfolio formation and thus the portfolios are tradable.25 

Table 3 presents average monthly returns of characteristics-sorted portfolios for p/l insurers (in % 

                                                 
24  For a detailed description of the characteristics and the portfolio formation see the Appendix. 
25  We follow Barber and Lyon (1997) using equally-weighted portfolios to avoid giving too much weight to a few 

large insurers in our small sample, which would thus bias the actual return pattern. Between 1999 and 2005 AIG 
and Citigroup constituted more than 20 percent of the entire p/l market capitalization (Thomann (2013)). 
Furthermore, equally-weighted returns are more in line with the approach of Fama-MacBeth (1973) regressions 
which equally weights each independent variable. 
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p.a.). Given the sample size we construct three return portfolios. The CAPM alphas and FF-3 

alphas in Table 3 are the abnormal returns from a spread portfolio between the high and low sorted 

return portfolios. A significant spread indicates that the return difference cannot be explained by 

the CAPM in Table 3 Panel A or the FF-3 model in Table 3 Panel B. 

First, we see that against the theoretical prediction of the CAPM, p/l insurance stocks sorted by 

CAPM beta do not result in higher returns the higher the beta exposure. This is not surprising as 

the CAPM has also been rejected for non-financial firms and p/l insurers in the past (Cummins 

and Harrington (1988), and Fama and French (1992)). Furthermore, we do not find a significant 

size effect although the monotonic pattern of higher returns for small insurers and low returns for 

large insurers is identical to non-financial firms (Fama and French (1993)).26 We do, however, 

find a significant effect between portfolios sorted by B/M ratio (B/M). The monthly return spread 

between low B/M and high B/M insurer returns is a statistically and economically significant 

0.83% (or 9.96% p.a.). Less surprising is the fact that the CAPM cannot explain the return 

difference between low and high B/M portfolios which is why Fama and French (1993) developed 

the HML factor to explain this return variation. However, it is more surprising that the 

Fama/French three-factor model which explicitly includes this B/M related factor is not able to 

capture the return difference in B/M portfolios either (Table 3, Panel B). This suggests that the 

B/M ratio in the p/l insurance sector has a different pricing cycle and a different meaning than the 

B/M ratio in non-insurance stocks.27 One explanation could be that the (insurance-specific) B/M 

ratio reflects some type of distress as Chen and Zhang (1998) for global equity markets. If that is 

the case, insurance stocks will most likely experience this distress during market downturns but 

also during natural catastrophes which do not necessarily have an effect on non-insurance firms. 

We also find that the past month return is a strong predictor for the following month return. 

Specifically, a positive return in the previous month results in a negative return in the following 

                                                 
26 We also used total assets instead of market capitalization and did not find a significant size effect either. 
27 A reason for the different cycle could be the so-called underwriting cycle which results in higher insurance prices 
during “hard markets” and low prices during “soft markets” (Cummins and Weiss (2009)). 
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month and vice versa. The spread is economically and statistically significant with an average 

return of 2.14% per month (or 25.68% p.a.). Both direction and economic size of the variable is 

similar to the findings of Jegadeesh (1990) who reports a monthly return of 2.49%. Note that p/l 

insurance stocks are not characterized by being microcaps or being thinly traded and thus this 

pattern cannot be associated with this behavior. Rather another explanation in this context could 

be brought forward and links overreaction by investors and the negative autocorrelation in stocks 

returns. Note also the fact that momentum-sorted portfolios do not create a significant spread 

which is distinct from the finance literature. 

Moreover, we observe a strong return pattern based on past cashflow volatility. The monthly 

return spread is 0.84% (or 10.08% p.a.). The result that lower cashflow volatility leads to higher 

returns is in line with Huang (2009) who also finds a negative relation between returns and 

cashflow volatility. Another important aspect is that low and medium portfolios share the same 

return but it is the portfolio with the highest cashflow volatility which drops significantly in its 

risk compensation and leading to a significant spread. The abnormal return spread from cashflow 

volatility can be neither explained by the CAPM nor the FF-3 model. 

Last but not least, portfolios sorted by insurance leverage, total leverage, and liquidity result in 

monotonic pattern and a significant return spread. However, this spread difference can be 

explained by the CAPM, i.e., the CAPM-alpha from time series regression is insignificant. 
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Table 3 
Panel A: Average monthly returns of characteristics-sorted portfolios from p/l insurers (in % per month, July 1988 – December 2013) 

Decile βCAPM β+ β- Size 
(MC) B/M MOM RETt-1 LIQ REV ID- 

VOLA 
CF-

VOLA 
CO-

SKEW 
CO-

KURT 
Asset 

Growth βΔTERM βΔDEF INVES
T βB/D LEV INS 

LEV 
FIN 
LEV 

Total 
LEV 

1 (low) 1.28 1.14 1.24 1.30 0.83 1.03 2.23 0.94 1.53 1.05 1.20 1.27 1.34 1.38 0.87 1.36 1.09 1.15 0.70 1.08 0.74 

2 (mid) 0.95 1.03 1.04 1.04 1.01 1.09 1.04 1.07 0.97 1.09 1.20 1.04 1.01 1.03 1.12 1.08 1.03 0.85 1.16 0.99 1.12 

3(high) 1.33 1.26 1.10 1.02 1.66 1.16 0.09 1.40 1.07 1.24 0.34 1.09 1.09 1.10 1.33 0.90 1.37 1.40 1.29 1.33 1.37 

Spread  
(3-1) 

0.06 
[0.21] 

0.11 
[0.36] 

-0.13 
[-0.48] 

-0.28 
[-0.87] 

0.83*** 
[2.82] 

0.13 
[0.37] 

-2.14*** 
[-7.31] 

0.46* 
[1.84] 

-0.46 
[-1.53] 

0.19 
[0.57] 

-0.84** 
[-2.47] 

-0.17 
[-0.69] 

-0.25 
[-1.03] 

-0.28 
[-1.11] 

0.46 
[1.50] 

-0.46 
[-1.56] 

0.28 
[1.23] 

0.26 
[0.95] 

0.58* 
[1.68] 

0.25 
[0.94] 

0.63* 
[1.82] 

CAPM 
Alpha 

(Spread) 

-0.00 
[-0.04] 

0.04 
[0.11] 

-0.31 
[-1.18] 

-0.24 
[-0.68] 

0.65** 
[2.23] 

0.37 
[1.22] 

-2.04*** 
[-7.10] 

0.30 
[1.31] 

-0.29 
[-0.97] 

-0.18 
[-0.64] 

-1.08*** 
[-3.38] 

-0.11 
[-0.41] 

-0.20 
[-0.86] 

-0.20 
[-0.83] 

0.29 
[1.02] 

-0.24 
[-0.86] 

0.26 
[1.10] 

0.31 
[1.12] 

0.37 
[1.18] 

0.09 
[0.39] 

0.44 
[1.36] 

# of 
observat
ions (T) 

306 306 306 306 306 306 306 306 306 306 306 306 306 306 306 306 306 258 306 306 306 

 
Panel B: Alphas from Fama-French 3-factor model regressions (in % per month, July 1988 – December 2013) 

Decile β β+ β- Size 
(MC) B/M MOM RETt-1 LIQ REV ID- 

VOLA 
CF-

VOLA 
CO-

SKEW 
CO-

KURT 
Asset 

Growth 
ΔTER

M ΔDEF INVES
T 

B/D 
LEV 

INS/ 
LEV 

FIN/ 
LEV 

Total 
LEV 

1 (low) 0.44** 
[2.38] 

0.31 
[1.45] 

0.46** 
[2.42] 

0.38 
[1.63] 

0.06 
[0.26] 

-0.12 
[-0.55] 

1.20*** 
[6.05] 

0.12 
[0.54] 

0.47** 
[2.17] 

0.31* 
[1.80] 

0.44** 
[2.29] 

0.34 
[1.55] 

0.40** 
[2.23] 

0.44** 
[2.39] 

0.07 
[0.31] 

0.32 
[1.34] 

0.16 
[0.67] 

0.14 
[0.60] 

-0.09 
[-0.53] 

0.32 
[2.05] 

-0.03 
[-0.16] 

2 (mid) 0.16 
[0.97] 

0.22 
[1.35] 

0.22 
[1.43] 

0.26 
[1.54] 

0.15 
[0.92] 

0.32** 
[2.07] 

0.24 
[1.47] 

0.24* 
[1.65] 

0.14 
[0.83] 

0.27 
[1.54] 

0.36** 
[2.16] 

0.20 
[1.27] 

0.17 
[1.05] 

0.17 
[1.08] 

0.27* 
[1.70] 

0.23 
[1.48] 

0.67 
[1.15] 

0.01 
[0.07] 

0.40** 
[2.16] 

0.16 
[0.90] 

0.34* 
[1.96] 

3(high) 0.22 
[0.98] 

0.18 
[0.79] 

0.01 
[0.06] 

-0.07 
[-0.37] 

0.70*** 
[3.00] 

0.31 
[1.45] 

-0.81*** 
[-3.49] 

0.34 
[1.54] 

0.27 
[1.24] 

0.08 
[0.36] 

-0.71** 
[-2.50] 

0.20 
[1.05] 

0.23 
[1.10] 

0.29 
[1.16] 

0.29 
[1.33] 

0.14 
[0.66] 

0.41* 
[1.88] 

0.43* 
[1.93] 

0.04 
[0.17] 

0.25 
[1.32] 

0.15 
[0.62] 

FF-3 
Alpha 

(Spread) 

-0.22 
[-0.88] 

-0.13 
[-0.42] 

-0.25* 
[-1.67] 

-0.45 
[-1.51] 

0.64** 
[2.26] 

0.43 
[1.50] 

-2.01*** 
[-6.84] 

0.22 
[0.96] 

-0.21 
[-0.72] 

-0.23 
[-0.80] 

-1.15*** 
[-3.56] 

-0.13 
[-0.48] 

-0.18 
[-0.75] 

-0.14 
[-0.58] 

0.22 
[0.76] 

-0.18 
[-0.66] 

0.25 
[1.01] 

0.30 
[1.14] 

1.34 
[0.50] 

-0.08 
[-0.38] 

0.18 
[0.65] 

 
All data are monthly returns (in %). T-statistics are presented in brackets and calculated from Newey-West standard errors with lags of three. The sample period is July 1988 to December 2013). Panel A reports raw returns from low to high 
exposure for each variable presented in the first row. Panel A also reports the return spread between high minus low exposure, the intercept from time series regressions with the market factor as independent variable (i.e. CAPM 
Alpha(Spread)), and the number of monthly observations. Panel B reports the intercepts from time series regressions with the market factor, SMB, and HML as independent variables (i.e. FF-3 Alpha) for each portfolio from low to high 
exposure for each variable presented in the first row of Panel B. Portfolios in Panel B are excess returns over the 1-Month T-Bill rate for the low to high exposures. The last row indicates the FF-3 alpha from time-series regressions on the 
spread between high minus low exposure (i.e. FF-3 Alpha (Spread)). 
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As noted by Daniel and Titman (1997) differences in average returns may not be the result of 

different risk exposure but rather the result of the (size and B/M ratio) characteristics 

themselves. For that purpose we also look at the beta-exposure on SMB and HML-sorted 

portfolios from three-year rolling regressions and yearly rebalancing. Panel A of Table 4 

reports the average returns from low to high exposure, the spread, and the CAPM alpha of 

that spread. We find that here is a weakly significant size effect which is not explained by the 

CAPM. The direction of this effect is surprising with low SMB exposure earning higher 

returns, that is, low exposure towards the small company effect results in higher returns. This 

somewhat contradicts the idea that higher SMB exposure leads to higher returns but rather 

suggests that a large SMB exposure is not compensated by higher returns. A larger insurance 

company earns lower returns (i.e., stocks sorted by market capitalization) but a low SMB 

exposure results in higher returns. This effect in SMB exposure, however, can be explained by 

the FF-3 model.  

The HML (beta exposure) sorting follows the same logic as the SMB (beta exposure) sorting. 

Here again, we observe a reverse relation from what we would have expected. A high beta 

exposure towards the HML factor results in lower returns although we would expect that a 

high exposure, that is, a strong effect on the B/M anomaly leads to larger returns. Note, 

however, that the spread is not significant (Panel A of Table 4) but the FF-3 alpha becomes 

significant, suggesting that the FF-3 model is falsely specified for the insurance sector to 

capture its unique B/M effect. Specifically, it explains why the FF-3 factor is not able to 

capture the B/M anomaly in insurance stocks shown in Table 3. 
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Table 4 
Panel A: Average monthly returns of SMB and HML-sorted portfolios from p/l insurers (in % per 
month, July 1988 – December 2013) 

Decile βSMB-sorted βHML-sorted 
1 (low) 1.28 1.20 
2 (mid) 1.15 1.08 
3(high) 0.72 1.03 
Spread  
(3-1) 

-0.56* 
[-1.78] 

-0.17 
[-0.61] 

CAPM Alpha (Spread) -0.53* 
[-1.66] 

-0.27 
[-1.04] 

# of observations (T) 306 306 

 
Panel B Alphas from Fama-French 3-factor model regressions (in % per month, July 1988 – December 
2013) 

 βSMB-sorted βHML-sorted 

1 (low) 0.26 
[1.33] 

0.37 
[1.64] 

2 (mid) 0.33** 
[2.08] 

0.28* 
[1.81] 

3(high) -0.12 
[-0.53] 

-0.09 
[-0.46] 

FF-3 Alpha (Spread) -0.38 
[-1.39] 

-0.46* 
[-1.84] 

All data are monthly returns (in %). T-statistics are presented in brackets and calculated from Newey-West standard errors with lags of three. 
The sample period is July 1988 to December 2013. Panel A reports raw returns from low to high exposure for beta exposure on SMB and 
HML. Panel A also reports the return spread between high minus low exposure, the intercept from time series regressions with the market 
factor as independent variable (i.e. CAPM Alpha(Spread)), and the number of monthly observations. Panel B reports the intercepts from time 
series regressions with the market factor, SMB, and HML as independent variables (i.e. FF-3 Alpha) for each portfolio from low to high 
exposure for each variable presented in the first row of Panel B. Portfolios in Panel B are excess returns over the 1-Month T-Bill rate for the 
low to high exposures. The last row indicates the FF-3 alpha from time-series regressions on the spread between high minus low exposure 
(i.e. FF-3 Alpha (Spread)). 
 

5.2 Fama-Macbeth (1973) regression with individual stock returns 

Having analyzed univariate portfolio sorts, we now turn to the cross-sectional regressions to 

validate these results and to see whether other model specification can explain them. We first 

run univariate Fama-Macbeth (1973) regressions on the insurance stocks returns for each 

independent variable. Table 5 shows the results and confirms that B/M, prior month return, 

and cashflow volatility, are significantly priced. We also find that liquidity is priced in the 

cross-section (but not insurance or total leverage). In contrast to our portfolio sorting, we now 

also find that beta exposure from changes in the term structure and beta exposure from 

changes in the default premium are priced cross-sectionally. 
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Table 5: Fama-MacBeth (1973) regressions with individual stock returns (univariate) 
 (I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (XVI) (XVII) (XVIII) (XIX) (XX) (XXI) 

β 0.24 
[0.93]                     

β+  0.04 
[0.20]                    

β-   -0.04 
[-0.18]                   

Ln(size)    -0.07 
[-1.18]                  

B/M     0.49** 
[2.16]                 

MOM      0.08 
[0.16]                

RETt-1       -9.51*** 
[-7.16]               

β LIQ        0.75* 
[1.77]              

REV         -0.41 
[-1.35]             

ID- VOLA          4.41 
[0.43]            

CF-VOLA           -3.19** 
[-2.57]           

CO-SKEW            -0.01 
[-0.78]          

CO-KURT             -0.00 
[-1.64]         

Asset Gtrh.              -0.13 
[-0.25]        

βΔTERM               5.17** 
[2.02]       

βΔDEF                -4.42* 
[1.92]      

INVEST                 0.51 
[1.20]     

B/D LEV                  0.99 
[0.94]    

INS/ LEV                   0.00 
[0.06]   

FIN/ LEV                    0.00 
[0.13]  

Total LEV                     0.00 
[0.23] 

Const. 0.73*** 
[2.56] 

0.84*** 
[3.11] 

0.80*** 
[2.98] 

1.70** 
[2.29] 

0.34 
[1.17] 

0.59** 
[2.40] 

0.96*** 
[3.17] 

0.75*** 
[2.88] 

0.93*** 
[3.46] 

0.67** 
[2.40] 

0.94*** 
[3.53] 

0.85*** 
[3.25] 

0.78*** 
[2.98] 

0.82*** 
[3.08] 

0.67** 
[2.54] 

0.67** 
[2.56] 

0.94*** 
[3.17] 

0.01 
[1.25] 

0.79*** 
[3.27] 

0.80*** 
[3.27] 

0.79*** 
[3.24] 

Avg. R2 0.05 0.05 0.04 0.05 0.04 0.02 0.04 0.03 0.04 0.05 0.05 0.04 0.03 0.03 0.04 0.04 0.03 0.05 0.03 0.03 0.03 

 



21 
 

In accordance with Table 4, we also report the cross-sectional regressions on the beta 

exposure of SMB and HML in Table 6. Again results from cross-sectional regressions 

confirm the results from portfolio sorts with SMB being negatively priced in the cross-section 

and thus contradicting the idea that SMB exposure is positively priced. 

 

Table 6: Fama-MacBeth (1973) regressions with individual stock returns (univariate) 
 (I) (II) 

βSMB -0.35* 
[-1.77]  

βHML  -0.08 
[-0.34] 

Const. 0.92*** 
[3.15] 

0.86*** 
[3.46] 

Avg. R2 0.03 0.04 

 

Following univariate Fama-MacBeth (1973) regressions, we further investigate the different 

pricing components in a multivariate framework to analyze the variables’ unique pricing 

ability. Table 7 shows the results from Fama-Macbeth (1973) regressions with several 

robustness tests of all significant variables from univariate regressions. 
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Table 7: Fama-MacBeth (1973) regressions with individual stock returns (multivariate) 
 (I) (II) (III) (IV) (V) 
      
      
B/M 0.49** 0.51** 0.61*** 0.46* 0.58** 
 [2.15] [2.07] [2.62] [1.87] [2.38] 
RETt-1 -7.72*** -7.58*** -7.60*** -6.90*** -7.47*** 
 [-4.78] [-4.72] [-4.54] [-4.36] [-4.67] 
β LIQ 0.85** 0.81* 0.94** 0.84** 0.61 
 [2.07] [1.86] [2.17] [2.08] [1.55] 
CF-VOLA -3.43** -3.44** -3.26** -3.25** -3.32** 
 [-2.25] [-2.36] [-2.11] [-2.23] [-2.29] 
βΔTERM -2.05 -1.69 -1.19 -0.59 1.52 
 [-0.44] [-0.34] [-0.25] [-0.12] [0.30] 
βΔDEF -5.21 -6.03 -3.87 -3.77 -1.39 
 [-1.24] [-1.34] [-0.93] [-0.88] [-0.33] 
βSMB -0.10 -0.03 -0.09 -0.07 0.07 
 [-0.56] [-0.17] [-0.51] [-0.37] [0.40] 
Const. 0.34 0.35 0.28 0.44 0.40 
 [1.06] [1.06] [0.90] [1.35] [1.21] 
      
Obs. 15,365 14,871 14,793 14,861 13,832 
Avg. R2 0.26 0.25 0.27 0.26 0.26 
      
Sample 
excludes 
observations: 

 <5th pctile. market 
cap. 

<5th pctile. trading 
vol. 

>95th pctile. rel. 
bid-ask spread 

<5th pctile. market cap. / 
<5th pctile. trading vol./ 
>95th pctile. rel. bid-ask 

spread 
Model (I) includes all significant variables from univariate sorts and regressions. Model (II) excludes all firm months with market 
capitalization below the samples 5th percentile. Model (III) excludes all firm months with trading volume below the samples 5th percentile. 
Model (IV) excludes all firm months with relative bid-ask spreads above the samples 95th percentile. Model (V) sequentially excludes all 
firm months with market capitalization below the samples 5th percentile, all firm months with trading volume below the samples 5th 
percentile, and all firm months with relative bid-ask spreads above the samples 95th percentile. 
 

These results are robust to variations in the sample’s market capitalization, trading volume, 

and relative bid-ask spread except for liquidity which becomes insignificant if we exclude the 

fifth percentile of smallest stocks (in terms of market capitalization), followed by the 

exclusion of the fifth percentile of least traded insurance stocks (in terms of dollar trading 

volume), and the 95th percentile of stocks with the highest relative bid-ask spread. We again 

confirm that B/M, prior month return, cashflow volatility, and liquidity remain significant in a 

multivariate framework, corroborating the fact that these variables are indeed priced in the 

cross-section of insurance stocks. It should be noted that liquidity becomes insignificant in 

our last and most demanding robustness test where we exclude 15% percent of our total 

sample size (Table 7, Model V), suggesting that the liquidity anomaly is attributable to small, 

less frequently traded insurance stocks with high bid-ask spreads. 
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5.3 Principal component analysis and risk factors 

So far our results imply that the B/M ratio, prior month return, cashflow volatility, and 

liquidity are priced in insurance stocks returns. The question, we have to ask at this point is if 

these characteristics are systematic risk components in insurance stocks and therefore can be 

matched by covariances with risk factors (see Vassalou and Xing (2004); Ghandi and Lust 

(2014)).  

In general, a linear factor model predicts average returns on a cross-section of returns related 

to risk premiums which are exposed to risk factors. According to Ross (1976) in his arbitrage 

pricing theory (APT) these factors should capture the common variation in asset returns. To 

follow this intuition we sort each insurance stock into five quintiles according to each 

significant characteristic found above. We then run four principal component analyses on 

each of the five return portfolios following Lustig, Roussanov, and Verdelhan (2011) and 

Ghandi and Lustig (2014). Table 8 shows the loadings of the first (Panel A) and second (Panel 

B) principal components on our characteristic-sorted portfolios. The first principal component 

explains between 68.59% and 71.52% of the return variation in insurance stocks. Since the 

loadings on the first principal components are all of similar size and direction an 

interpretation as level factor, such as the market factor, is comprehensible. The second 

principal components, in contrast, load from negative to positive (and vice versa) on the 

different characteristics and explain between 8.77% and 13.40% of the return variation. Thus, 

the second principal components on each characteristic-sorted portfolio can be interpreted as 

slope factors because of their monotonic increase (decrease) in loadings. Since no other 

principal components exhibit a similar increasing (decreasing) pattern as the second principal 

components, they are most likely to explain the cross-section of insurance stock returns as 

candidate risk factor. 
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Motivated by the principal component analyses and following Lustig, Roussanov, and 

Verdelhan (2011) as well as Ghandi and Lustig (2014), we construct risk factors from returns 

for each of the second principal components.  

Table 8: Principal components 
Panel A: First principal component 

Portfolio B/M RETt-1 LIQ CFVOLA 
1 (Low) 0.45 0.41 0.44 0.47 

2 0.47 0.45 0.46 0.47 
3 0.47 0.46 0.45 0.47 
4 0.45 0.47 0.46 0.46 

5 (High) 0.40 0.44 0.43 0.35 
% Var 68.59 71.52 71.62 69.00 

 
Panel B: Second principal component 

Portfolio B/M RETt-1 LIQ CFVOLA 
1 (Low) -0.46 0.88 -0.06 -0.31 

2 -0.29 -0.11 -0.37 -0.24 
3 0.15 -0.06 -0.28 -0.10 
4 -0.13 -0.23 -0.11 -0.03 

5 (High) 0.82 -0.40 0.88 0.91 
% Var 11.68 9.61 8.77 13.40 

This table reports the principal component coefficients of the relevant characteristic-sorted portfolios on B/M ratio (B/M), prior month return 

(RETt-1). The last row each panel reports the share of the total variance explained by each principal component in percent. The sample period 

is July 1988 to December 2013. 

 

To emphasize the most extreme portfolios we go three quarters long in the portfolio with the 

highest characteristic (i.e. portfolio 5) and one quarter long in the portfolio with the second to 

highest characteristic (i.e. portfolio 4). To have a zero-investment portfolio we also go three 

quarters short in the portfolio with lowest characteristic (i.e. portfolio 1) and one quarter short 

in the portfolio with the second to lowest characteristic (i.e. portfolio 4).28 Formally, each 

excess-return portfolio is constructed as: 

𝐹𝑖,𝑡 =
3
4

∗ (𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜_5 − 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜_1) +
1
4

∗ (𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜_4 − 𝑝𝑜𝑟𝑓𝑜𝑙𝑖𝑜_2) 

That is, for each characteristic-sorted portfolio (i.e. B/M, RETt-1, CFVOLA, LIQ) a risk factor 

is constructed. We denominate the factors BMF, PRETF, CFVF, and LQF.  

On the one hand the first principal component (PC1), which is a level factor, suggests that it 

follows the market as indicated in Panel A of Table 9. The correlation of the excess market 

                                                 
28 The following results are robust to the construction of the factors as long as the top and bottom portfolios 
outweigh the portfolios in the middle. Results are available upon request from the authors. 
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return with each of the first principal components shows a high correlation factor of 0.63 and 

0.64. On the other hand, our constructed risk factors based on the four characteristics show a 

high correlation with the second principal components (PC2) between 0.75 and 0.97 

suggesting that our constructed factors adequately replicate the second principal components. 

 
Table 9: Correlation of principal components with common factors 
Panel A: Correlation of excess market return with first principal components (level factor) 

 PC1 (B/M) PC1 (RETt-1) PC1 (LIQ) PC1 (CFVOLA) 
MKTRF (B/M) 0.64    

MKTRF (RETt-1)  0.64   
MKTRF (LIQ)   0.63  

MKTRF (CFVOLA)    0.63 
 
Panel B: Correlation of risk factors with second principal components (slope factor) 

 PC2 (B/M) PC2 (RETt-1) PC2 (LIQ) PC2 (CFVOLA) 
BMF 0.95    

PRETF  -0.93   
LQF   0.75  

CFVF    0.97 
 

Here, we also want to highlight the fact that the risk factor constructed from the B/M ratio 

(i.e., BMF) should be theoretically related to Fama and French’s (1993) HML factor. 

However, as we have already seen in βHML-sorted portfolios and the respective alpha values 

(Table 4), HML and the B/M ratio have different meanings. This is also validated by the 

correlation of Fama and French’s (1993) HML factor with our B/M sorted factor, BMF. Both 

factors are uncorrelated with a correlation coefficient of 0.02. 

 

5.4 Fama Macbeth (1973) regression with portfolios using risk factors 

Having constructed the insurance-specific risk factors we now turn to cross-sectional 

regressions following Fama and MacBeth (1973) to analyze if there is a linear relationship 

between the covariance of our factors and the average insurance stocks returns. On the left 

hand side, we use the excess returns on the 20 portfolios sorted by B/M, RETt-1, CFVOLA, 

and LIQ as these portfolios provide the most variation in average returns. On the right hand 

side we use the different asset pricing models described in Section 4.1. and the insurance-
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specific model including the excess market return (MKTRF), a zero-investment portfolio 

sorted by B/M ratio (BMF), a zero-investment portfolio sorted by prior month return, a zero-

investment portfolio sorted by liquidity exposure (LQF), and a zero-investment portfolio 

sorted by cashflow volatility (CFVF). Formally, the model is described as: 

 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝛼 + 𝛽𝑖,𝑀𝐾𝑇𝑅𝐹𝑀𝐾𝑇𝑅𝐹𝑡 + 𝛽𝑖,𝐵𝑀𝐹𝐵𝑀𝐹𝑡 + 𝛽𝑖,𝑃𝑅𝐸𝑇𝐹𝑃𝑅𝐸𝑇𝐹𝑡 + 𝛽𝑖,𝐿𝑄𝐹𝐿𝑄𝐹𝑡 + 𝛽𝑖,𝐶𝐹𝑉𝐹𝐶𝐹𝑉𝐹𝑡 

 

Table 10 reports the Fama-MacBeth (1973) regressions for all five models and two control 

regressions. 

 
Table 10: Fama Macbeth (1973) regression with portfolios and risk factors 

 (I) (II) (III) (IV) (V) (VI) (VII) 
 CAPM FF-3 Carhart-4 Petkova-5 Insurance-5 Control-1 Control-2 

βMKTRF 1.017 1.65* 2.43** 1.46* 2.11** 2.80** 2.64*** 
 [1.18] [1.66] [2.29] [1.80] [2.15] [2.50] [2.67] 

βBMF     0.77** 0.60** 0.58** 
     [2.38] [2.36] [2.29] 

βPRETF     -2.09*** -1.68*** -1.68*** 
     [-6.96] [-7.16] [-7.19] 

βLQF     0.44* 0.39* 0.39* 
     [1.65] [1.80] [1.84] 

βCFVF     -0.87** -0.62** -0.58* 
     [-2.30] [-2.08] [-1.96] 

βSMB  0.33 0.71       
  [0.63] [1.28]     

βHML  -0.90 0.88     
  [-1.30] [1.24]     

βMOM   3.24***   -0.48  
   [3.85]   [-0.49]  

𝒖�𝑻𝑬𝑹𝑴    0.37***   0.06 
    [4.58]   [0.76] 

𝒖�𝑫𝑬𝑭    -0.28***   -0.03 
    [-4.14]   [-0.39] 

𝒖�𝒅𝒊𝒗    0.02    
    [1.02]    

𝒖�𝑹𝑭    0.03***   0.01 
    [2.84]   [0.96] 

Const. (α) 0.30 0.23 -1.42 0.24 -0.21 -0.54 -0.43 
 [0.69] [0.46] [-0.88] [0.02] [-0.35] [-0.81] [-0.01] 

Avg. R2 46.0 0.48 0.50 0.52 0.59 0.60 0.60 
Column (I) describes the CAPM. Column (II) describes the Fama-French (1993) three-factor model. Column (III) describes the Carhart 
(1997) four-factor model. Column (IV) describes the Petkova (2006) five-factor model. Column (V) describes the five-factor insurance 
model. Standard errors are Shanken (1992)-corrected. 
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First of all we see that the market factor is insignificant in the CAPM but becomes significant 

and positive in all other specifications suggesting that CAPM needs some type of conditioning 

which then results in a significant pricing of the market factor. Interestingly, SMB and HML 

are insignificant and do not imply a linear relationship between their covariances and our test 

assets. We do, however, find a significant relationship between Carhart’s (1997) momentum 

factor, MOM, and our test assets. This relationship, though, is not robust if we include MOM 

in our insurance-specific five-factor model (see Regression VI). Similarly, the Petkova-5 

model indicates four significant factors which lose their significance in our control 

regressions (see Regression VII) except for the market factor.  

How different the models perform in the cross-section is visually compared in Figure 1. The 

y-axis shows the historical average excess return of each of the 20 portfolios while the x-axis 

provides the predicted excess return form each model on the 20 portfolios.  
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Figure 1: Actual vs. predicted returns 

 
Graph A shows the actual excess returns and the predicted return by the CAPM. Graph B shows the actual excess returns and the predicted 

returns by the FF-3 model. Graph C shows the actual excess returns and the predicted return by the Petkova model. Graph D shows the actual 

excess returns and the predicted return by the insurance-5 model. In the bottom right the adj. R-square from a single cross-sectional 

regression is reported. The portfolios are 20 excess return portfolios sorted by B/M ratio, prior month return, liquidity, and cashflow 

volatility. 

 

Graph A in Figure 1 shows the actual excess returns and the predicted return by the CAPM. 

Graph B shows the predicted returns by the FF-3 model. Graph C is the Petkova (2006) model 

and Graph D is our insurance-5 model. Each graph also provides the adjusted R-square from a 
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single cross-sectional regression.29 Neither the CAPM nor the FF-3 models are doing well in 

predicting the portfolio return. The Petkova model, however, is doing surprisingly well 

compared to the FF-3 model with a cross-sectional, adjusted R-square of 16.99%. However, 

the insurance-5 model is doing an excellent job in capturing the cross-sectional variation with 

an adjusted R-square of 94.88% supporting the fact that insurance five-factor model is well 

specified. 

 

5.5 Time-series regressions with portfolios using risk factors 

The following time-series regressions give further insight into the covariances and pricing 

errors from different asset pricing models. Table 11 shows factor loadings, intercept values, 

and the GRS-test statistic from time-series regressions on the Fama and French (1993) factors 

with 4x5 characteristics sorted excess portfolios. Although, SMB and HML load significantly 

on the different portfolios the loadings do not show a monotonic pattern which would indicate 

a higher beta exposure followed by higher average returns. The fact that the FF-3 model 

cannot capture the cross-sectional return variation of the test assets is also reflected the 

intercept with 10 out of 20 intercepts being significantly different form zero. This is formally 

confirmed by the GRS-test statistic which is rejected at the 1%-significance level. 

                                                 
29 The adj. R-square in the Fama-MacBeth (1973) regressions are average R-squares from 306 monthly cross-
sectional regressions. 
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Table 11: Time series regression – FF3 factor model 
 Low 2 Medium 3 High 
  
 Book-to-market portfolios 

𝛽𝑀𝐾𝑇𝑅𝐹 0.59*** 0.74*** 0.58*** 0.55*** 0.69*** 
 [7.19] [6.91] [8.79] [9.93] [9.08] 
 RETt-1 portfolios 
 0.82*** 0.58*** 0.56*** 0.55*** 0.63*** 
 [11.97] [9.07] [7.44] [8.27] [8.55] 
 Liquidity portfolios 
 0.57*** 0.57*** 0.56*** 0.63*** 0.80*** 
 [9.06] [8.06] [7.17] [8.94] [12.42] 
 Cashflow volatility portfolios 
 0.54*** 0.58*** 0.63*** 0.58*** 0.85*** 
 [6.89] [6.97] [9.47] [9.73] [9.04] 
      
 Book-to-market portfolios 

𝛽𝑆𝑀𝐵 -0.45*** -0.37*** -0.10 -0.11 -0.02 
 [-3.64] [-3.65] [-1.25] [-1.12] [-0.20] 
 RETt-1 portfolios 
 -0.32*** -0.21** -0.22** -0.20*** -0.13 
 [-2.95] [-2.50] [-2.07] [-2.77] [-1.55] 
 Liquidity portfolios 
 -0.18** -0.15* -0.31*** -0.32*** -0.19*** 
 [-2.09] [-1.88] [-2.60] [-2.77] [-2.93] 
 Cashflow volatility portfolios 
 -0.30*** -0.28*** -0.24*** -0.01 -0.23* 
 [-2.69] [-2.60] [-3.33] [-0.06] [-1.88] 
      
 Book-to-market portfolios 

𝛽𝐻𝑀𝐿 0.28*** 0.49*** 0.40*** 0.48*** 0.50*** 
 [2.66] [3.66] [5.12] [6.99] [4.75] 
 RETt-1 portfolios 
 0.55*** 0.35*** 0.34*** 0.45*** 0.51*** 
 [6.67] [3.84] [4.20] [5.83] [4.84] 
 Liquidity portfolios 
 0.42*** 0.42*** 0.36*** 0.51*** 0.65*** 
 [4.48] [5.67] [3.69] [5.89] [6.69] 
 Cashflow volatility portfolios 
 0.33*** 0.41*** 0.47*** 0.39*** 0.57*** 
 [3.82] [4.49] [6.48] [4.37] [4.14] 
      
 Book-to-market portfolios 

𝛼 0.06 0.09 0.20 0.13 0.70*** 
 [0.26] [0.43] [1.00] [0.74] [3.00] 
 RETt-1 portfolios 
 1.20*** 0.44** 0.31* -0.01 -0.81*** 
 [6.05] [2.08] [1.66] [-0.05] [-3.49] 
 Liquidity portfolios 
 0.12 0.25 0.09 0.39** 0.34 
 [0.54] [1.25] [0.58] [2.13] [1.54] 
 Cashflow volatility portfolios 
 0.43** 0.41** 0.24 0.43* -0.72** 
 [2.25] [2.01] [1.24] [1.92] [-2.49] 
      

GRS-test statistic = 4.62***, p-value=0.00 
This table presents time-series regressions on excess returns of insurance stocks sorted by B/M, prior month return, liquidity, and cashflow 
volatility The sample period is July 1988 to December 2013. Standard errors in parentheses are Newey-West (1987)-corrected with lags of 
four. The GRS test statistic tests the null that all intercepts are jointly zero. *, **, and *** denote statistical significance at the 10%, 5%, and 
1% levels, respectively. 



31 
 

In contrast the insurance-specific five-factor model is formally not rejected by GRS-test 

statistic although seven out of the twenty portfolios have weakly significant intercepts (Table 

12). More importantly the factor loadings on the different portfolios show in all cases a 

monotonic increase / decrease for each portfolio it should capture the cross-sectional 

variation.30 For example, the BMF factor loads significantly negative (i.e., -0.54) on the 

lowest B/M portfolios and then continuously increases in factor loadings up to a significant 

0.66 in the highest B/M portfolio. Because of this pattern in covariances, cross-sectional 

patterns in returns can be captured. We not report time-series regressions on the Petkova 

model because the factors are not returns and thus no interpretation about the intercepts is 

possible. 

 

                                                 
30 Note that we only report factor loadings for the portfolios the factor is intended to explain the cross-sectional 
variation in returns. 
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Table 12: Time series regression - Insurance 5-factor model 
 Low 2 Medium 3 High 
  
 Book-to-market portfolios 

𝛽𝑀𝐾𝑇𝑅𝐹 0.46*** 0.57*** 0.50*** 0.44*** 0.51*** 
 [7.02] [6.18] [7.98] [7.00] [6.84] 
 RETt-1 portfolios 
 0.53*** 0.49*** 0.47*** 0.44*** 0.55*** 
 [7.14] [7.12] [7.07] [6.06] [7.74] 
 Liquidity portfolios 
 0.50*** 0.51*** 0.42*** 0.47*** 0.52*** 
 [7.13] [7.28] [5.46] [6.32] [7.46] 
 Cashflow volatility portfolios 
 0.47*** 0.48*** 0.51*** 0.53*** 0.46*** 
 [6.74] [6.98] [6.50] [7.83] [6.38] 
      
 Book-to-market portfolios 

𝛽𝐵𝑀𝐹 -0.54*** -0.42*** -0.02 -0.02 0.66*** 
 [-6.62] [-3.47] [-0.41] [-0.38] [7.40] 
 RETt-1 portfolios 

𝛽𝑃𝑅𝐸𝑇𝐹 -0.68*** -0.11 -0.01 0.16* 0.56*** 
 [-7.66] [-1.29] [-0.07] [1.92] [6.60] 
 Liquidity portfolios 

𝛽𝐿𝑄𝐹 -0.51*** -0.19** 0.04 0.19* 0.70*** 
 [-5.02] [-2.43] [0.53] [1.92] [7.27] 
 Cashflow volatility portfolios 

𝛽𝐶𝐹𝑉𝐹 -0.28*** -0.16*** -0.10 0.02 1.00*** 
 [-3.92] [-2.67] [-1.59] [0.35] [12.78] 
      
 Book-to-market portfolios 

𝛼 0.35 0.66* 0.54* 0.23 0.49 
 [1.16] [1.90] [1.70] [0.87] [1.56] 
 RETt-1 portfolios 
 0.43 0.42 0.36 0.50* 0.41 
 [1.55] [1.43] [1.27] [1.69] [1.53] 
 Liquidity portfolios 
 0.52* 0.43 0.28 0.37 0.54* 
 [1.92] [1.39] [0.89] [1.17] [1.96] 
 Cashflow volatility portfolios 
 0.38 0.52* 0.33 0.65** 0.34 
 [1.37] [1.77] [0.99] [2.26] [1.16] 
      
      

GRS-test statistic = 0.677, p-value=0.848 
This table presents time-series regressions on excess returns of insurance stocks sorted by B/M, prior month return, liquidity, and cashflow 
volatility The sample period is July 1988 to December 2013. Standard errors in parentheses are Newey-West (1987)-corrected with lags of 
four. The GRS test statistic tests the null that all intercepts are jointly zero. *, **, and *** denote statistical significance at the 10%, 5%, and 
1% levels, respectively. 
 

5.6 Comparing Hansen-Jagannathan distances 

Based on the time-series and cross-sectional evidence we are interested whether the 

insurance-specific factor model is also statistically outperforming the other models. First we 

report the Hansen-Jagannathan (HJ) distance for each model and whether it is statistically 
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different from zero (Table 13). All but the insurance-specific model are rejected suggesting 

that it is the only model not being rejected. 

Table 13: Hansen-Jagannathan Distance 
 Null CAPM FF3  PETK5 INS5 

𝛿̂ 0.606 0.559 0.558 0.507 0.173 

p(𝛿 = 0) 0.000 0.000 0.000 0.001 0.972 

Std. Err 0.059 0.059 0.061 0.075 0.069 

2.5% CI( 𝛿) 0.503 0.457 0.454 0.383 0.085 

97.5% CI( 𝛿) 0.737 0.693 0.696 0.681 0.356 

Max Error 12.2 11.2 11.2 10.2 3.5 

J-test 82.57 76.80 63.98 45.96 6.47 

p(J-test) 0.000 0.000 0.000 0.000 0.971 

This table shows the HJ-distance for the Fama-French (FF-3) model and the p/l insurance model. The models are estimated using excess 
returns on the 20 portfolios sorted by B/M ratio, prior month return, liquidity, cashflow volatility, and the gross return on the one-month T-
bill return. 𝛿̂ is the HJ-distance. p(𝛿 = 0) is the p-value for the test H0: 𝛿 = 0. CI( 𝛿) is the 95% confidence interval for 𝛿. J-test is the 
Hansen optimal GMM specification test statistic and p(J-test) its associated p-value of Hansen's J-test. 
 

To statistically compare the different models we follow Kan and Robotti (2009) and analyze 

the difference in the squared HJ-distance. From the conventional models from the finance 

literature, Petkova’s five-factor model is again outperforming the FF-3 model as we could 

already see in the Graphs in Section 5.4. Again, though, we also see that the insurance five-

factor model is significantly outperforming all other models at the 1%-level (Table 14). 

Table 14: Tests of equality of squared Hansen-Jagannathan distances 
 CAPM FF3 PETK5 INS5 

Null 0.055*** 0.056*** 0.110*** 0.337*** 

 (0.002) (0.007) (0.008) (0.000) 

CAPM  0.001 0.056* 0.283*** 

  (0.897) (0.079) (0.000) 

FF3   0.055*** 0.282*** 

   (0.002) (0.000) 

PETK5    0.227*** 

    (0.000) 

This table compares the squared HJ-distances (𝛿̂) of the different factor models according to Kan and Robotti (2009). The test assets are the 

20 excess return portfolios sorted by B/M ratio, prior month return, liquidity, and cashflow volatility. We report the difference between the 

HJ-distances of the models in row i and column j, 𝛿̂𝑖 − 𝛿̂𝑗, and the respective p-value in parentheses for the test H0 : 𝛿̂𝑖
2 = 𝛿̂𝑗

2. 
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6 Robustness 

In further robustness tests we will run Fama-MacBeth (1973) regressions, and time-series 

regressions using size and B/M sorted portfolios.  

6.1 Size and B/M portfolios 

A potential point of critique is that the FF-3 model was designed constructed to explain size 

and B/M-sorted portfolios in the cross-section of stock returns. Although there is a B/M ratio 

anomaly in insurance stock returns (that is not related to the B/M anomaly of the rest of the 

economy), we did not find a size anomaly when we compare insurance stock returns in the 

lowest 20th and in the highest 80th percentiles. Three explanations could be possible. First, 

there is indeed no size anomaly in insurance stocks and never has been. Second, there was a 

size anomaly which has disappeared, which is also suggested by some studies for equities in 

the non-financial sector (Hirshleifer (2001); Schwert (2003)). Third, the size anomaly is 

“hidden” in the most extreme-sorted stocks in the insurance sector. The last explanation is 

difficult to answer since the low number of insurance stocks in our sample increases the 

measurement error in each portfolio the less insurance stocks it contains. Nevertheless, a 

natural question to ask is thus, how does the Fama-French model cope with insurance stocks 

sorted on these two characteristics and how does the Insurance five-factor model deal with 

size and B/M portfolios? At the cost of estimation precision we create 10 size and 10 B/M 

portfolios. This means that on the one hand betas from time-series regressions are estimated 

with larger errors. On the other hand a larger cross-section is available which enhances the 

estimation in each monthly cross-section.  

When we simply sort insurance stocks into 10 size portfolios (Panel A of Table 15), we find 

indeed that the smallest stocks provide a large increase in return from 0.71% (or 8.52% p.a.) 

in the second to smallest to 1.87% (or 22.24% p.a.) in the smallest portfolio. This supports the 

idea that only the smallest stocks in the insurance sector are exposed to a size anomaly. 
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Table 15: Size-sorted and B/M-sorted portfolios 
Panel A: Ten size-sorted portfolios 

 Small 2 3 4 5 6 7 8 9 Large 10-1 9-2 8-3 
SIZE avg. 

return 1.87 0.71 0.89 0.98 1.01 1.35 1.01 1.02 1.10 0.94 -0.93** 
[-2.19] 

0.39 
[1.09] 

0.14 
[0.52] 

Avg. # of 
stocks 6.67 6.09 6.19 6.26 6.16 6.31 6.34 6.24 6.42 5.89    

This table reports 10 size-sorted portfolios (based on market capitalization) including the average number of stocks for each portfolio and the 

return difference between small and large portfolios. 

Panel B: Ten B/M-sorted portfolios 
 Low 2 3 4 5 6 7 8 9 High 10-1 9-2 8-3 

B/M avg. 
return 0.72 0.91 1.17 0.90 1.03 1.05 1.03 0.84 1.41 1.87 1.15** 

[2.46] 
0.50 

[1.29] 
-0.33 

[-1.05] 
Avg. # of 

stocks 6.27 5.55 5.82 5.69 5.56 5.79 5.90 5.56 5.42 4.75    

This table reports 10 B/M-sorted portfolios including the average number of stocks for each portfolio and the return difference between high 

and low B/M portfolios. 

 

Similarly, the B/M anomaly is driven by the most extreme portfolios when sorted by B/M 

(Panel B of Table 15). However, the changes between the extreme and next to extreme 

portfolios are not as severe as in the size anomaly. 

To further investigate the size and B/M characteristic, we run time-series and cross-sectional 

regressions on all portfolios in the following sections. 

 

6.2 Fama-MacBeth (1973) regressions with portfolios sorted by B/M and size 

We first run Fama-MacBeth (1973) regressions as in Section 5.4. However, this time, the 

dependent variables are 10 size and 10 B/M sorted insurance stock portfolios. Here, we find 

indeed a weakly significant coefficient on the SMB factor supporting the idea that there some 

size-exposure in the most extreme portfolios. Still, BMF from the insurance-specific five-

factor model seems to capture also this weakly significant anomaly leaving the SMB 

coefficient insignificant if we include BMF in the regression (Column IV of Table 16). 
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Table 16: Fama Macbeth (1973) regression with portfolios and risk factors 
 (I) (II) (III) (IV) 
 FF-3 Petkova-5 Insurance-5 Control-1 

βEMKT 1.63* 2.20** 1.013 -0.070 
 [1.66] [2.05] [1.00] [-0.07] 

βBM   0.664** 0.623** 
   [2.55] [2.33] 

βPRET   -0.003  
   [-0.00]  

βLIQ   0.167  
   [0.26]  

βCFVOLA   0.061  
   [0.11]  

βSMB 0.87*   -0.164 
 [1.70]   [-0.32] 

βHML 0.48   0.166 
 [0.82]   [0.28] 

𝒖�𝑻𝑬𝑹𝑴  0.07   
  [0.65]   

𝒖�𝑫𝑬𝑭  0.02   
  [0.19]   

𝒖�𝒅𝒊𝒗  0.01   
  [0.62]   

𝒖�𝑹𝑭  -0.03   
  [-1.31]   

Const. (α) -0.24 -0.20 0.348 0.782 
 [-0.48] [-0.02] [0.68] [1.47] 

Avg. R2(%) 0.37 0.38 0.45 0.43 
Column (I) describes the Fama-French (1993) three-factor model. Column (II) describes the Carhart (1997) four-factor model. Column (III) 
describes the Petkova (2006) five-factor model. Column (IV) describes the five-factor insurance model. Standard errors are Shanken (1992)-
corrected. 
 

When we visually compare the 10 size and 10 B/M sorted portfolios, we also see that the 

overall fit using the insurance five-factor model is superior to the FF-3 model. The FF-3 

model has an adjusted R-square of 27.23% (Graph B) versus an adjusted R-square of 43.92% 

in the insurance five-factor model (Graph D). 
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Figure 2: Actual vs. predicted returns 

 

Graph A shows the actual excess returns and the predicted return by the CAPM. Graph B shows the actual excess returns and the predicted 

returns by the FF-3 model. Graph C shows the actual excess returns and the predicted return by the Petkova model. Graph D shows the actual 

excess returns and the predicted return by the insurance-5 model. In the bottom right the adj. R-square from a single cross-sectional 

regression is reported. The portfolios are 20 excess return portfolios sorted by B/M ratio, and size. 

 

6.3 Time-series regressions 

When we run time series regressions on the 10 size-sorted portfolios we find that the 

difference between the most extreme portfolios is still not explained by the FF-3 factor model 

despite the inclusion of the SMB factor due to the significant intercept value (Panel A of 
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Table 17). The reason behind that is an insignificant SMB loading in the smallest insurance 

stocks which should load significantly positive to capture the variation. In contrast, the SMB 

factor is able to capture the variation in the largest stocks as can be seen in the increasing 

factor loadings from portfolio 8 to portfolio “large” in Panel A of Table 17. 

Table 17: Ten size-sorted portfolios 
Panel A: Fama-French Model on ten size-sorted portfolios 

 Small 2 3 4 5 6 7 8 9 Large 10-1 9-2 8-3 
              
MKTRF 0.74*** 0.59*** 0.48*** 0.58*** 0.40*** 0.47*** 0.51*** 0.64*** 0.80*** 1.12*** 0.38** 0.22* 0.17** 
 [7.13] [6.66] [5.84] [7.55] [5.23] [5.03] [5.93] [10.01] [7.25] [7.12] [2.47] [1.96] [2.50] 
SMB -0.01 0.04 0.13 0.09 0.07 -0.08 -0.18 -0.48*** -0.60*** -1.16*** -1.15*** -0.64*** -0.61*** 
 [-0.06] [0.37] [1.40] [0.83] [0.56] [-0.63] [-1.49] [-4.63] [-5.13] [-8.84] [-5.63] [-4.96] [-5.11] 
HML 0.38** 0.38*** 0.43*** 0.26** 0.42*** 0.48*** 0.38*** 0.39*** 0.76*** 0.54*** 0.16 0.38* -0.04 
 [2.54] [3.18] [4.17] [2.30] [3.77] [3.95] [3.86] [4.53] [3.91] [2.84] [0.60] [1.70] [-0.44] 
Const. 0.89** -0.15 0.09 0.14 0.29 0.58** 0.25 0.20 0.07 -0.21 -1.10*** 0.22 0.10 
 [2.56] [-0.58] [0.36] [0.60] [1.17] [2.31] [1.11] [0.99] [0.33] [-0.79] [-2.74] [0.67] [0.39] 
              
Adj. R2              

 
Panel B: Insurance 5-factor model on ten size-sorted portfolios 

 Small 2 3 4 5 6 7 8 9 Large 10-1 9-2 8-3 
              
MKTRF 0.55*** 0.49*** 0.49*** 0.59*** 0.41*** 0.45*** 0.46*** 0.47*** 0.44*** 0.65*** 0.10 -0.05 -0.02 
 [6.05] [5.80] [6.00] [10.94] [5.72] [5.39] [6.30] [8.38] [3.59] [4.61] [0.91] [-0.42] [-0.38] 
BMF 0.40*** 0.04 -0.05 0.01 -0.18** -0.08 -0.23*** -0.22** -0.05 -0.63*** -1.03*** -0.09 -0.17 
 [3.54] [0.47] [-0.73] [0.12] [-2.16] [-0.83] [-2.68] [-2.34] [-0.23] [-2.86] [-4.80] [-0.42] [-1.53] 
PRETF 0.01 0.01 -0.12 -0.05 -0.07 -0.01 0.05 0.03 -0.12 -0.04 -0.06 -0.12 0.15 
 [0.12] [0.05] [-1.27] [-0.61] [-0.81] [-0.05] [0.57] [0.28] [-0.73] [-0.32] [-0.36] [-0.82] [1.22] 
LQF -0.20 -0.08 -0.11 -0.01 0.00 -0.05 0.07 0.04 0.37 0.25* 0.45** 0.45 0.14 
 [-1.22] [-0.64] [-1.15] [-0.12] [0.00] [-0.44] [0.94] [0.39] [1.35] [1.71] [2.02] [1.39] [1.30] 
CFVF 0.45*** 0.28* -0.05 -0.06 -0.08 -0.24*** -0.13** -0.09 -0.03 0.11 -0.34* -0.31 -0.04 
 [3.81] [1.87] [-0.63] [-0.89] [-1.16] [-2.89] [-2.04] [-1.50] [-0.21] [0.65] [-1.73] [-1.34] [-0.41] 
Const 1.28*** 0.21 0.03 0.08 0.33 0.61 0.46 0.47 0.12 0.40 -0.87* -0.09 0.43 
 [3.24] [0.53] [0.10] [0.29] [0.97] [1.63] [1.57] [1.44] [0.32] [0.87] [-1.96] [-0.22] [1.43] 
              
Adj. R2              

 

When we run the insurance-specific five-factor model (which does not have an explicit size 

factor such as SMB), we see that the intercept is only weakly significant (Panel B of Table 

17). This seems to be mostly attributed to the BMF factor, which already showed in the Fama-

MacBeth (1973) regressions in Section 6.2 that it remains significant even if SMB was 

included (Table 16). Here, in the time-series regressions BMF loads significantly positive on 

the smallest insurance stocks with a coefficient of 0.40 (suggesting that they also have high 

B/M ratios) and then continues to load significantly negative on the largest insurance stocks 

with a coefficient of -0.63 (suggesting that they also have low B/M ratios). 
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For the 10 B/M sorted portfolios, results are corroborated that the FF-3 model is not able to 

capture even the variation in portfolios for which it was designed, leaving a significant 

intercept between the most extreme B/M sorted portfolios (Panel A of Table 18). In contrast 

the insurance-5 model captures all significant intercepts between the most extreme portfolios 

(Panel B of Table 18). 

 

Table 18: Ten B/M-sorted portfolios 
Panel A: Fama-French Model on ten B/M-sorted portfolios 

 Low 2 3 4 5 6 7 8 9 High 10-1 9-2 8-3 
              
MKTRF 0.64*** 0.54*** 0.82*** 0.67*** 0.51*** 0.65*** 0.54*** 0.56*** 0.64*** 0.72*** 0.08 0.10 -0.26* 
 [7.68] [5.33] [5.96] [7.52] [7.19] [8.32] [6.84] [7.87] [8.36] [6.32] [0.62] [0.95] [-1.67] 
SMB -0.54*** -0.33** -0.62*** -0.17* 0.08 -0.32*** -0.07 -0.15 0.02 -0.03 0.51** 0.35* 0.47*** 
 [-3.93] [-2.59] [-4.02] [-1.95] [0.68] [-3.93] [-0.48] [-1.30] [0.12] [-0.19] [2.06] [1.76] [2.80] 
HML 0.28*** 0.26** 0.46*** 0.51*** 0.40*** 0.39*** 0.59*** 0.37*** 0.49*** 0.55*** 0.27 0.23 -0.09 
 [2.59] [2.17] [2.89] [3.93] [3.85] [4.49] [6.46] [4.12] [3.96] [2.96] [1.21] [1.39] [-0.50] 
Const. -0.07 0.18 0.20 -0.03 0.22 0.19 0.17 0.04 0.49 0.87** 0.93** 0.31 -0.16 
 [-0.29] [0.59] [0.76] [-0.12] [1.03] [0.75] [0.75] [0.15] [1.59] [2.35] [2.17] [0.82] [-0.53] 
              
Adj. R2              

 
Panel B: Insurance 5-factor model on ten B/M-sorted portfolios 

 Low 2 3 4 5 6 7 8 9 High 10-1 9-2 8-3 
              
MKTRF 0.47*** 0.46*** 0.56*** 0.58*** 0.51*** 0.50*** 0.46*** 0.43*** 0.51*** 0.49*** 0.02 0.05 -0.13 
 [7.01] [5.49] [5.08] [6.70] [7.74] [6.91] [5.94] [6.89] [5.83] [4.91] [0.22] [0.71] [-1.46] 
BMF -0.57*** -0.50*** -0.50*** -0.36*** 0.01 -0.04 -0.04 -0.00 0.41*** 0.97*** 1.54*** 0.91*** 0.49*** 
 [-6.45] [-5.07] [-3.02] [-3.87] [0.10] [-0.53] [-0.62] [-0.01] [5.21] [5.70] [11.91] [8.28] [3.01] 
PRETF -0.02 -0.13 0.06 0.03 0.10 0.10 -0.03 -0.05 0.12 -0.25 -0.23* 0.25*** -0.11 
 [-0.21] [-1.22] [0.49] [0.29] [0.80] [1.39] [-0.38] [-0.57] [1.52] [-1.44] [-1.87] [2.79] [-0.88] 
LQF 0.03 0.01 0.11 -0.00 0.01 -0.07 0.10 -0.05 0.11 -0.02 -0.04 0.10 -0.16 
 [0.26] [0.13] [0.88] [-0.04] [0.06] [-0.72] [1.08] [-0.55] [1.43] [-0.10] [-0.41] [1.08] [-1.11] 
CFVF 0.02 -0.06 0.13 0.07 -0.04 0.04 -0.12 0.10 0.04 -0.02 -0.04 0.10 -0.03 
 [0.36] [-0.75] [0.97] [0.95] [-0.50] [0.32] [-1.26] [1.37] [0.64] [-0.17] [-0.47] [1.03] [-0.20] 
Const 0.36 0.30 0.86** 0.45 0.47 0.59* 0.22 0.20 0.65* 0.16 -0.20 0.36 -0.66 
 [1.18] [0.81] [2.04] [1.29] [1.23] [1.83] [0.62] [0.68] [1.69] [0.31] [-0.49] [1.04] [-1.47] 
              
Adj. R2              
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7 Conclusion 

This paper is the first to analyze traditional and state of the art models from the asset pricing 

literature in an insurance context. We show which risk factors are priced in insurance stocks 

through cross-sectional regressions on beta coefficients. 

We analyze return anomalies in property/liability (p/l) insurance stocks returns. Natural 

disasters, exclusion in previous asset pricing test, regulation in the insurance sector, and high 

leverage, require a separate analysis of insurance stocks whether return anomalies persist and 

whether existing asset pricing models are able to explain the cross-section of expected 

insurance stock returns. Analyzing insurance stocks between 1988 and 2013, we find that the 

B/M ratio, prior month return, illiquidity, and cashflow-volatility are priced in the cross-

section of (p/l) insurance stocks. The size anomaly is only present in smallest decile of 

insurance stocks. The Fama/French model from the overall equity market can neither explain 

the size nor the B/M anomaly in the insurance stocks. A five factor model build upon the 

insurance-specific anomalies explains the cross-sectional variation. Our results complete 

those of Fama and French (1992, 1993) on non-financial firms and Viale et al. (2009) on 

banks. Our findings also shed new light on the pricing determinants of insurance products and 

provide accurate cost of capital estimates. 

Although this paper emphasizes the high relevance of cross-sectional relationships, which 

seems to be underrepresented (especially in contrast to the overall finance literature), this does 

not prevent further research to analyze the variations of insurance stocks and factors in a time-

series context for the purpose of risk management, i.e. hedging. 
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Appendix 
 

Table A1: Firm Data 
This table shows the number of companies in the property/liability insurance sector. Column 1 and 3 report the 
year insurer information is available. Column 2 and 4 report the number of property/liability insurers (SIC code 
6331) per year. 

Year Property/Casualty  
(SIC code 6331) Year Property/Casualty  

(SIC code 6331) 

1987 61 2001 55 
1988 66 2002 54 
1989 67 2003 56 
1990 71 2004 58 
1991 77 2005 61 
1992 81 2006 64 
1993 94 2007 59 
1994 90 2008 54 
1995 89 2009 53 
1996 89 2010 48 
1997 78 2011 47 
1998 74 2012 44 
1999 65 2013 43 
2000 61   
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Data are retrieved from the Center for Research in Security Prices (CRSP), Compustat, and 

personal webpages of academics. All variables used in this study are measured once a year or 

once a month depending on the variable. We use only information being known to investors at 

the date of calculation and thus do not introduce a look-ahead bias.  

β / β- / β+ Regular CAPM / downside / upside betas are measured as post-ranking betas using daily data 
in a rolling window of one year and in step sizes of one month. 

Ln(size) Size is measured as the market capitalization of a stock. Market capitalization is measured at 
the end of June of year t and defined as price times shares outstanding. The natural logarithm 
is applied in individual stocks regressions. 

B/M Book-to-market equity is the ratio of the book value of equity to the market value of equity, 
both being measured in December of year t-1. Book equity is book equity per share 
(Compustat data item “bkvlps”) plus investment tax credit (Compustat data item “txditc”) if 
available. Market equity is defined as price times shares outstanding. 

MOM Momentum is the cumulative monthly stock return from month j−12 to j−2. The j-1 month 
return is skipped to avoid the previous month return anomaly. The Momentum variable is 
measured on each month. 

RETt-1 The previous month return is defined as CRSP’s raw return from month j-1. 
βLIQ The liquidity beta is measured as the comovement with Pastor and Stambaugh’s (2001) 

innovations in market-wide liquidity. The liquidity beta is measured as post-ranking beta using 
monthly data in a rolling window of three years and step sizes of one month. 

REV Reversal is defined as the cumulative monthly stock return from month j−37 to j−13. 
ID- VOLA Idiosyncratic Volatility  
CFVOLA Cashflow-volatility is defined as the standard deviation over the previous eight quarterly 

cashflows figures. Cashflow is defined as the sum of income before extraordinary items, 
depreciation and amortization. Cashflows are additionally standardized by quarterly sales 
figures (Huang (2009)). 

CO-SKEW Co-skewness is defined as the coefficient on a squared market factor from rolling regressions 
on daily excess returns over the past year. 

CO-KURT Co-kurtosis is defined as the coefficient on a cubic market factor from rolling regressions on 
daily excess returns over the past year. 

Asset Growth Asset growth is defined as the percentage change in total assets from the fiscal year ending in 
calendar year t−2 to fiscal year ending in calendar year t−1 (Cooper, Gulen, and Schill 
(2008)). 

βΔTERM βΔTERM is defined as the beta exposure over the past 36 months. ΔTERM is the change in 
yields between the 10-year constant maturity yield and 1-year constant maturity yield 
downloaded from FRED. 

βΔDEF βΔDEF is defined as the beta exposure over the past 36 months. ΔDEF is the change in yields 
between Moody’s Baa corporate bond and the 10-year Treasury yield downloaded from 
FRED. 

INVEST Investment performance is defined as the cashflows from investment activity (COMPUSTAT 
item: IVNCF) standardized by total insurance premiums (COMPUSTAT item: IPTI) 

βB/D LEV βB/D LEV is defined as the exposure of the Broker/Dealer leverage factor over the past 36 
months (12 quarters). The broker/dealer leverage factor is downloaded from Tyler Muir’s 
website. 

INS/ LEV Insurance leverage is defined as other liabilities (COMPUSTAT item: LO) divided by market 
equity. 

FIN/ LEV Financial leverage is defined as the sum of current debt (COMPUSTAT item: DLC) and non-
current debt (COMPUSTAT item: DLTT) divided by market equity. 

Total LEV Total leverage is defined as the difference between total assets and book equity divided by 
market equity. 
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